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Almtract--An accurate analysis and effective computer simulation of evaporating droplets moving through 
a stagnant hot gas are important for the understanding of the basic process dynamics, as well as for 
improvement of global spray models and specific spray models and specific dispersed-flow-system designs. 
Using input data for the gasification of three n-decane fuel droplets, tt~e transient interaction effects on 
the individual droplet Reynolds numbers, vaporization rates, droplet distances and average Nusselt 
numbers have been analyzed for different initial conditions. The present work is an extension of our 
experimentally verified boundary-layer analysis of a single vaporizing droplet, assuming laminar axisym- 
metric flow and spherically shrinking droplets. The computer simulation model can be used to find optimal 
operational conditions to achieve rapid gasification without droplet collisions. 
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1. I N T R O D U C T I O N  

A detailed and accurate approximate analysis of the dynamics and transport mechanisms of 
multiple, interacting vaporizing droplets in a hot gas stream is important for the basic understand- 
ing and improvement of a variety of two-phase flow systems. Applications include spray processes, 
such as fuel droplet combustion or spray cooling, and discrete particle/fluid flow interactions such 
as particle-laden jets or particle suspension flows. 

The problem of thermal convection past a spherical particle has attracted numerous investigators 
(cf. Kuo 1986; Clift et al. 1978 etc.). For example, Finlayson & Olson (1987) developed accurate 
Nusselt number correlations for single spheres. Kleinstreuer & Wang (1988) analyzed the heat 
transfer mechanisms between rotating porous spheres and flowing power-law fluids. The problem 
of single-droplet vaporization in a convective gas stream has been addressed by Prakash & 
Sirignano (1980), Prakash & Krishan (1984), Abramson & Sirignano (1988)and Renksizbulut & 
Haywood (1988), among others. Thermal convection studies of multiple interacting particles are 
restricted to two-sphere/droplet systems with the exception of the fluid mechanics and heat transfer 
simulations of three closely-spaced spheres by Ramachandran et al. (1980a, b). For example, Raju 
& Sirignano (1987) combined the finite difference code developed by Dwyer & Sanders (1984) with 
the grid transformation scheme published by Thomson et al. (1977), to solve the unsteady 
Navier-Stokes equations (Red ~< 100) for two vaporizing droplets in tandem. Relevant experimental 
work is confined to flow visualization and measurements of the individual drag coefficients and flow 
separation angles of two-sphere systems (e.g. Rowe & Henwood 1961; Tsuji et al. 1982). 

In order to contribute to a more realistic simulation of dense-dispersed flow, at least three to 
five dynamically interacting droplets with phase change in the moderate-to-high Reynolds number 
regime have to be considered (cf. Ramachandran & Kleinstreuer 1986). In this paper, the 
approximate analysis by Wang & Kleinstreuer (1989) is extended to multiple dynamically 
interacting vaporizing droplets at Redo /> 100. Results are shown for three droplets, employing a 
modified form of the correlations for the drag/interaction coefficients of three closely-spaced 
spheres/droplets developed by Ramachandran et al. (1989a), and a thermal near-wake model 
deduced from the work by Ramachandran et al. (1989b) The assumptions of laminar axisymmetric 
boundary-layer flow for Redo >/100, quasi-steady-state gas-phase dynamics, negligible internal 
droplet circulation and droplet sphericity are discussed in Wang & Kleinstreuer (1989). 
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2. ANALYSIS 

Considering three spherical droplets on a one-dimensional trajectory, the dynamics of the j th  
droplet is described by Newton's second law of motion (figure 1): 

dw: _ 3C°'JPalW:lW: , j = 1,2,3, [la] 
dt 4 ~ pp 

subject to 

zj=zj.0 and wj=wj.0 at t = 0 .  [lb] 

Here, wj is the velocity of droplet j, t is the time, d is the droplet diameter, CD is the effective drag 
coefficient, p is the density for the gas mixture (Pa) or the droplet (pp) and z is the axial coordinate. 

At any time step, the dimensionless droplet distance is 

@,j+, _zj-zj+, 
do ' j = l , 2 ,  [21 

where the velocity of the j th  droplet is 

_ dzj 
w j -  d-t" [31 

The CD.jS represent the effective drag force on the j th  particle due to its motion and the presence 
of the other (two) particles (Ramachandran et al. 1989a). Presently, the effect of  droplet 
vaporization (i.e. surface blowing) on CD.j is not yet incorporated. Hence, only the initial 
dimensionless time period, z~ ~< 10, of the droplet dynamics is shown. The correlations are with 
R e  d = wd/v~ : 

and 

(~I = - I - 0.096(Red) °'2475 di~ °'965 exp [4] 

Co,2 = 1 - (Red)2'° 1593 (0.2932di~ '° 4876 "3 I- 0.1341dfi°'4242) [5]  
(CDs)2 

CD.3 = l - 0.325[In(Red)3 + l]°~°3d~ °385 e x p / - ° ' 2 8 2  / \ | ,  
(CD,)3 \ d-~12 ,} [6] 

where the standard drag correlation for the solitary droplet is (White 1974): 

24 6 
(Cos):. = (Red~j + 1 + x/(Red)j -I- 0.4. [7] 

An inertial coordinate frame is employed, where at each time level the orthogonal x - y  coordinate 
system is fixed to the individual droplets (cf. figure 1). The streamwise coordinate x is measured 
along the surface from the forward stagnation point and y is the coordinate normal to the surface; 
r is the distance from the axis of  symmetry to the drop surface; u and v are the gas-phase velocity 

I~ .. j~ ~ T[ 
I -  d 23 ~1 - d 12 ~I  

"3-~ ,.J 
Z2 ~1 

Figure I. System schematics and coordinates, 
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components; h is the enthalpy of the gaseous mixture; T is the temperature; Y is the vapor mass 
fraction; A is the droplet area, 2 is the gas constant and L is the latent heat; k, ~ and 0t are the 
conductivity, the mass diffusion coefficient and the thermal diffusivity, respectively; subscripts b, 
e, G, i, L and 0 indicate boiling, boundary-layer edge, gas phase, interface, liquid-phase and initial 
conditions, respectively. Hence, the gas-phase fluid mechanics, liquid-phase heating and droplet 
vaporization can be described by (Wang & Kleinstreuer 1989): 

O(rpu) O(rpv) 
(continuity) - -  -t - -  = O, [8] Ox Oy 

0u 0u d u , +  O /~yy , [9] 
(momentum) p u ~xx + v ~yy = p, uo-~x Oy 

( Oh Oh) O(kOT'I, [10] 
(energy) p U~x +v~yy =~yy\ de] 

(species) p u~--~x+ -~yj=~yy p ~ y y  , [11] 

(conduction) 0TL ~L 0 [ 2 OTL ) 
0t =riOrr~ r -~r  ' [12] 

(mass flux) (pv)i(Yi-1) = ( p ~  0~-y Y)~ [13] 

and 

0TL = k a A ~ y  (heat flow) (pv)iAL + kLA-~- r 
i" 

The associated gas-phase boundary conditions are: 

a t y = 0 ,  u = 0 ,  v=vi, T=T~, Y=Y~; 

and 

a t y ~ ,  u=uo(x), T= T~, Y = Y ~ = 0 .  

The liquid-phase conditions are: 

and 

[14] 

[15a] 

[15b] 

0TL ,=0 0TLI "" qi. [I 5d] Or =0, ~ ,=R(,) 

The mass fraction at the interface is a function of the droplet surface temperature, 

l .61 
and the time rate of change of the droplet radius can be expressed as 

_ 2 [  0. d R(t) = (pv)~ sin 0 dO. [17] 
dt 2pL J0 

The transformation and solution of [8]-[17] are given in Wang & Kleinstreuer (1989). Their 
experimentally verified computer code appears as a subroutine in the present model for the 
calculation of the interfacial conditions, and hence the droplet size at each time level (cf. figure 2). 
The dimensionless time is defined as ZG = 4tVG/d2" In summary, a patched boundary-layer 
approximation is being employed to solve for (the) transfer processes of the droplets at each time 
step, i.e. the droplets are kept stationary and treated individually during each At. 

TL(t = O) = To Vr; [15c] 
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Figure 2. Computational flow chart. 

3. NUMERICAL SOLUTION 

Keller's box method has been extended to solve the system of gas-phase boundary-layer 
equations for momentum, heat and mass transfer simultaneously (cf. Wang & Kleinstreuer 1989). 
A different implicit finite difference scheme has been used to solve the liquid-phase transient 
conduction equation. After initialization of the program with an educated guess for the droplet 
surface temperature, the preliminary interfacial mass fraction can be obtained from [16] and the 
transformed versions of [8]-[11], subject to conditions [15a, b], are solved at each time step. 
Now the interracial conditions [13] and [14] have to be fulfilled which yields a boundary condition, 
i.e. [15d], for the solution of [12]. Then the new droplet surface temperature is used in the 
solution of the gas-phase equations until, iteratively, convergance has been achieved, i.e. 
[(T~ e* -  T°ld)/TreWl <~ 10 -4. The new droplet radius is obtained from [17]. Thus, the gas-side 
equations are solved for quasi-steady-state conditions, although the individual droplet radius 
changes with time, i.e. Rj = Rj(t),  j = l, 2, 3. 

Simultaneously, at any given time level, [1]-[3] are solved where the Co.j expressions [4]-[7] yield 
the effective approach stream Re d for each droplet. The effective approach stream temperature is 
taken to be 

T~.k  + I = 0 .2Ti ,k  + O.8Too,k , k = 1,2, [18] 

based on the work by Ramachandran et al. (1989b). The computational flow chart for a 
multiple-droplet iterative procedure at each time step is given in figure 2. 



ANALYSIS OF INTERACTING VAPORIZING FUEL DROPLETS 299 

Table 1. Comparison of the drag coefficient ratio (CD4/CD~) for flow past two tandem spheres; Re d = 40 

d12 = 1.5 d12 -- 2 dr2 = 4 

Rowe & Zapryanov Zapryanov 
Tal et al. Henwood Present & Toshev Present & Toshev Present 

(1984) (1961) method (1986) method (1986)  method 

First sphere 0.88 0.80 0.840 0,88 0.877 0.92 0.937 
Second sphere 0.53 0.54 0.567 0,62 0.624 0.74 0.732 

The accuracy of the computer simulation model is checked in two ways: (a) comparison of the 
predictive results with published experimental and theoretical data sets for specific case studies; and 
(b) testing of the mesh-independence of the results (cf. Wang & Kleinstreuer 1989). 

4. R E S U L T S  A N D  D I S C U S S I O N  

4.1. Model verification 

The predictive capabilities of the core of the present computer simulation model have been 
successfully verified in the past with special case studies of mixed convectoin heat transfer of a 
sphere with blowing (cf. Kleinstreuer & Wang 1988) and single-droplet vaporization in a convective 
gas stream (Wang & Kleinstreuer 1989). Because of the lack of experimental or analytical results 
for three interacting particles, comparisons are made for two spheres/drops in tandem. Thus, 
correlations [4]-[6] are reduced for a two-sphere system by eliminating the effect of d23, so that 

CD, I = 1 - -  0 . 0 9 6 ( R e d  )0.2475 d ~0.965 [19] 
(CDs)l 

and 

CD.2 = 1 -- 0.2932(Red)° 1593 d ~0.4876 [20] 
(CDs)~ 

A comparison of the computer predictions with both experimetnal data (Rowe & Henwood 1961) 
and numerical results (Zapryanov & Toshev 1986) is shown for different particle spacings in table 1. 
While table 1 summarizes individual drag coefficient ratios for closely-spaced spheres, figures 3 
and 4 show for two interacting vaporizing droplets a comparison of the present results with the 
finite difference solution by Raju & Sirignano (1987). The input data used are listed in table 2. 
During the initial stage (ZG ~ 10), the amount of fuel evaporating is low and hence the droplet size 
reduction, as indicated with the temporal ratio of radii, is minor (figure 3a). However, Red decreases 
rapidly due to drag/interaction effects (figure 3b). The second droplet approaches the first one very 
quickly, as shown in figure 4. As indicated in table 1, the effective drag force is much lower for 

Table 2. Input data sets for figures 3-10 

Raju & Sirignano Present 
(1987), method 

figures 3a, 3b and 4 (n-decane) 

Operational data 
d0~m) 50 50 
%,0(m/s) 25 25 
T~ (K) 1000 1000 
T O (K) 350 300 
p (atm) 10 I0 

Fuel properties 
Tb (K) 573 565 
p (kg/m 3) NR 730 

(m2/s) NR 7.2 × 10 -s 
(m2/s) NR 1.155 × 10 -8 

cp (cal/g tool K) NR 66 
MW (g/g mol) 192 142.3 
k (cal/s K) NR 2.84 × 10 -4 

NR ~ not reported. 
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Figure 3b. Comparison of transient droplet radius and 
Reynolds number for the second droplet. 

the second particle being in the wake of the leading particle and hence the faster moving second 
droplet catches up with the first droplet. The comparison of different system characteristics with 
the numerical results by Raju & Sirignano (1987) is very good for the two shrinking droplets 
(cf. figures 3a and 3b) and for the Red/Red0 of the leading droplet (cf. figure 3a). However, Red 
for the second droplet and hence the droplet spacing differ (cf. figure 4). Since experimentally and 
theoretically verified drag/interaction coefficients have been employed in the present analysis, the 
discrepancies may be due to blowing effects, near-wake effects, and/or the use of different property 
values, not fully reported by Raju & Sirignano (1987) (cf. table 2). 

4.2. Three-droplet dynamics 
The transient changes in droplet radius, mass and Red for three dynamically interacting droplets 

are depicted in figures 5a-5c. While the transient characteristics of droplets 2 and 3 stay very 
similar, the first droplet shrinks faster and decelerates more rapidly. As a result, the second and 
third droplets in tandem catch up with the leading droplet, i.e. droplets 1 and 2 form a "pair" 
heading towards collision (cf. figure 6). The effective drag coefficients CD, 2 and CD, 3 are  very similar, 
which implies that d23 (t) stays almost constant until droplet coalescence. Ejecting the third droplet 
closer to the second droplet (i.e. dl2 = 6 but d23 = 2) causes measurable upstream effects, as can 
be concluded from the solid curves in figure 7 relative to figure 6; all three droplets may coalesce 
if their lifetimes permit. When the second droplet is ejected closely to the leading droplet 
(d~2 = 2) and the third droplet at d23 = 6, the last droplet becomes solitary, leaving the for- 
mation, while the first two droplets become a rapidly approaching pair (figure 8). Needless to say, 
systematic variations of the initial and operational conditions allows the user of the new computer 
simulation model to map out optimal scenarios in terms of maximum vaporization without droplet 
collisions. 

Transient, spatially-averaged Nu values, Nu(t), for each droplet are shown in figures 9a and 9b 
for different Redo. Despite the relatively high initial distance (d u = 6), the second droplet is strongly 
affected by the leading droplet while the third droplet exhibits Nu values similar to the 
second droplet because the heat transfer mechanism is in these cases convection-dominated (cf. 
figures 5a-5c). Since we solve for the multiple-droplet dynamics on a droplet-by-droplet basis for 
each time step, the initial points Nu/(To. 0 = 0),j = 1, 2, 3, are suppressed and replaced with Nuj(0+), 
i.e. Nu at zo.0 = Azo = 10 -5. Recalling that Nu ~ 30/dy [i, it is transparent why the average Nu 
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Figure 5a. Overall transient behavior of the leading droplet 
for three interacting droplets. 

decreases with time and is higher at higher Red. The interfacial mass transfer or blowing velocity 
increases with time, generating surface temperature gradients of decreasing magnitude. With higher 
Red the thermal boundary layer becomes thinner, counteracting the gasification effect and resulting 
in steeper temperature gradients. Consequently, droplets vaporize faster at higher Red. 

5. C O N C L U S I O N S  

Accurate and efficient computer simulation of dynamically interacting droplets vaporizing on a 
one-dimensional trajectory is important for the basic understanding of the process dynamics and 
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for improved design applications to numerous dense-dispersed flow systems. In this paper, our 
single vaporizing droplet analysis, using a boundary-layer type approach, is extended to study three 
interacting vaporizing droplets. The predictive results of the computer simulation model, previously 
validated with experimental data sets, compare well with an implicit finite difference solution of 
the full Navier-Stokes equations for laminar axisymmetric flow past two interacting vaporizing 
droplets. 

Using input data for gasification of three n-decane droplets, the transient interaction effects on 
the individual droplet Red, vaporization rates or droplet shrinking, droplet distances and spatially 
averaged Nu values have been analyzed for different initial conditions, i.e. Rea0 = 100, 200 and 
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Figure 8. Droplet spacings vs time for three interacting droplets. 
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du.0 = 2, 4, 6. The leading droplet always evaporates and decelerates fastest, influenced by the 
following droplets even when the initial distance is quite large, e.g. dr2 = 6. As a result, the second 
droplet catches up with the first droplet rather quickly. In a multiple-droplet system, pairing is 
swiftly established with potential coalescence if the droplet lifetimes permit or with detachment of 
the third droplet which becomes solitary. The average Nu of each droplet decreases with time due 
to interfacial mass transfer (blowing) and increases with higher inlet Rea0 because of steeper 
interracial temperature gradients. 

The portable computer code can be used to find optimal operational conditions to achieve rapid 
droplet gasification without droplet collision. 
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